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Abstract: The World Health Organization lists air pollu- 
tion as one of the top five risks for developing chronic non- 
communicable disease, joining tobacco use, harmful use of 
alcohol, unhealthy diets and physical inactivity. This re- 
view focuses on how host defense mechanisms against 
adverse airborne exposures relate to the probable inter- 
acting and overlapping pathophysiological features of 
neurodegeneration and multiple chemical sensitivity. 
Significant long-term airborne exposures can contribute to 
oxidative stress, systemic inflammation, transient receptor 
subfamily vanilloid 1 (TRPV1) and subfamily ankyrin 1 
(TRPA1) upregulation and sensitization, with impacts on 
olfactory and trigeminal nerve function, and eventual loss 
of brain mass. The potential for neurologic dysfunction, 
including decreased cognition, chronic pain and central 
sensitization related to airborne contaminants, can be 
magnified by genetic polymorphisms that result in less 
effective detoxification. Onset of neurodegenerative dis- 
orders is subtle, with early loss of brain mass and loss of 
sense of smell. Onset of MCS may be gradual following 
long-term low dose airborne exposures, or acute following 
a recognizable exposure. Upregulation of chemosensitive 
TRPV1 and TRPA1 polymodal receptors has been observed 
in patients with neurodegeneration, and chemically sen- 
sitive individuals with asthma, migraine and MCS. In 
people with chemical sensitivity, these receptors are also 
sensitized, which is defined as a reduction in the threshold 
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and an increase in the magnitude of a response to noxious 
stimulation. There is likely damage to the olfactory system 
in neurodegeneration and trigeminal nerve hypersensitiv- 
ity in MCS, with different effects on olfactory processing. 
The associations of low vitamin D levels and protein kinase 
activity seen in neurodegeneration have not been studied in 
MCS. Table 2 presents a summary of neurodegeneration 
and MCS, comparing 16 distinctive genetic, pathophysio- 
logical and clinical features associated with air pollution 
exposures. There is significant overlap, suggesting poten- 
tial comorbidity. Canadian Health Measures Survey data 
indicates an overlap between neurodegeneration and MCS 
(p < 0.05) that suggests comorbidity, but the extent of 
increased susceptibility to the other condition is not 
established. Nevertheless, the pathways to the develop- 
ment of these conditions likely involve TRPV1 and TRPA1 
receptors, and so it is hypothesized that manifestation of 
neurodegeneration and/or MCS and possibly why there is 
divergence may be influenced by polymorphisms of these 
receptors, among other factors. 

Keywords: air pollution; multiple chemical sensitivity; 
neurodegeneration; oxidative stress; transient receptor 
potential channels. 

 

Introduction 

All humans are regularly exposed to thousands of chem- 
icals in the air we breathe, the water we drink, the food we 
eat, and the products we buy and use [1, 2]. Our exposures 
are ubiquitous, complex and dynamic mixtures [3, 4]. To 
understand the many potential exposures that affect health 
over the life span, the concept of the exposome has been 
developed [5]. With knowledge of beneficial and adverse 
effects of exposures, the exposome captures the cumula- 
tive hazards, from preconception to death, associated with 
multiple environmental exposures, including the micro- 
biome, according to one’s genome and epigenetic features 
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and the intracellular, metabolic, inflammatory and stress 
pathway responses [6]. Our most common route of expo- 
sure to toxicants is inhalation [7]. 

There is potential for any organ system to be impacted 
by the systemic absorption and response to pollutants. The 
purpose of this review is to focus on the potential biological 
impacts of air pollution exposure on the central nervous 
system (CNS), and in particular to compare and contrast 
the pathophysiology of neurodegeneration and multiple 
chemical sensitivity (MCS). 

 

Literature review search criteria 

Pubmed/Medline was searched using the terms “oxida- 
tive stress”, “systemic inflammation”, “blood-brain bar- 
rier”, TRPV1, TRPA1, upregulation, sensitization, “air 
pollution”, translocation, olfactory, trigeminal, “neuro- 
developmental disorder”, neurodegeneration, detoxifi- 
cation, “central sensitization”, “multiple chemical 
sensitivity”, “capsaicin challenge”, and related terms (see 
Supplementary Material – Glossary), alone and com- 
bined. Articles from 1991 to January 2021 were selected 
based on the purpose of this review. We also reviewed 
pertinent publications found on the website of the World 
Health Organization. 

 

Airborne pollutant exposures 

Diverse air pollutants are ubiquitous in both outdoor and 
indoor environments. 

 

Sources – outdoors 
 

The urban outdoor air is contaminated with a complex 
mixture of numerous pollutants, such as airborne 
particulate matter (PM) and gases, including carbon 
monoxide, polyaromatic hydrocarbons, sulfur dioxide, 
nitrogen oxides, ozone and volatile organic compounds 
(VOCs) [8, 9]. 

Most studies showing increased risks of developing 
chronic disease with outdoor air pollution consider the 
effects of long-term exposure. Many studies demonstrate 
adverse health effects associated with residing in proximity 
to major roadways [10]. It is noteworthy, however, that we 
spend more than 90% of our time indoors [11], with 70% at 
home [12]. The building envelope of our homes and work- 
places may reduce our exposures somewhat but we still 
remain exposed to outdoor air pollution while indoors [13]. 

Indeed, about 65% of PM from outdoor sources is inhaled 
while indoors [14]. 

PM originates from both natural and anthropogenic 
sources, and is a heterogeneous mixture of solid and liquid 
particles suspended in the air, varying in concentration, 
size, chemical composition and surface area [15–17]. PM is 
categorized according to size: particles between 2.5 and  10 
μm diameter (PM10) is defined as ‘coarse’; 2.5 μm or 
smaller (PM2.5) is ‘fine’; and PM <0.1 µm or 100 nm is 
defined as ‘ultrafine’ (UFP) or nanoparticles [18]. In contrast 
to PM10 and PM2.5, UFPs have negligible mass but they are 
the dominant contributor to the total number of particles in 
ambient air, typically 80–90% of all particles [4, 19]. The 
highest UFP concentrations in urban areas are observed in 
proximity to traffic, particularly when vehicles are idling 
and accelerating [20]. There is no recognized threshold for 
health effects of outdoor PM2.5 regardless of whether the 
exposure occurs indoors or outdoors, and  there is evidence 
that adverse health effects occur at cur- rent levels of 
exposure [21]. 

Airborne PM tends to adsorb harmful substances on its 
surface, such as heavy metals, polyaromatic hydrocar- 
bons, and volatile and semi-volatile organic compounds 
(VOCs and SVOCs) [22–26]. VOCs and SVOCs equilibrate 
between vapour and adsorbed states, with SVOCs in 
greater preponderance on particles. The partitioning of 
VOCs onto nanoparticles is less studied [27], but they 
readily partition and adsorb to surfaces too, including on 
and within irregular and porous PM [28]. 

Exposure can also occur to exogenous free radicals 
and reactive oxygen species (ROS) that are formed out- 
doors through photochemical reactions (between NOx, 
carbon monoxide, formaldehyde and VOCs) [29]. ROS are 
particle-bound [30, 31], and can be transported into 
buildings. ROS are also generated in the indoor environ- 
ment, where they are produced via the interaction of ozone 
and airborne chemicals, such as terpenes [32]. The levels of 
ROS on particles in the indoor environment generally 
mirrors the ROS on particles outdoors [29]. 

 
 

Sources – indoors 
 

Total VOC concentrations are approximately four times 
higher indoors than in outdoor air, [I would delete: 
according to indoor sources,] with higher VOC concentra- 
tions observed from building materials in new or renovated 
locations [13, 33]. Other common indoor sources of VOCs 
include household cleaning and laundry products, air 
fresheners, fragrances, and cooking odors [34–36]. There is 
also considerable, ubiquitous indoor exposure to SVOCs, 
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many of which are high production volume chemicals used 
in plastics, detergents, synthetic musks, pest control 
products, building components and furnishings (e.g. flame 
retardants and stain repellents) [37, 38]. 

Being semi-volatile, SVOCs continuously vaporize and 
re-condense, redistributing from their original source to 
the indoor air and interior surfaces, including surfaces of 
airborne particles [39]. Inhaled SVOCs on smaller particles 
(e.g. nanoparticles) are likely to penetrate deeper into the 
respiratory tract and to linger and interact longer with 
contacted tissues [40, 41]. 

As a gas, the bulk of inhaled VOCs are exhaled 
immediately; however, desorption of VOCs from PM 
maintains elevated VOC concentrations on the surface of 
the bronchial tubes and alveoli for an extended period of 
time [42]. VOCs emanating from particles may diffuse from 
the extracellular space into the cellular membrane and into 
the cells themselves [42]. Thus the toxicities of PM are 

magnified by transport and release of both VOCs and 
SVOCs [42]. 

The burden of disease from air pollution appears to be 
due to the combined effects of indoor and outdoor ambient 
exposures [8]. See Table 1. 

 
 
Toxicodynamics 

 
Air pollution is now recognized as a fifth major risk factor 
for developing non-communicable diseases by the World 
Health Organization, joining tobacco use, harmful use of 
alcohol, unhealthy diets and physical inactivity [47, 48]. 
Scientific consensus continues to build that inhaled pol- 
lutants induce oxidative stress [49], which occurs when the 
cellular or organism detoxification systems are over- 
whelmed or deficient [50]. Oxidative stress is a phenome- 
non caused by an imbalance between the production of 

 
Table : Common sources of ambient air pollutants. 

 

Air pollutants Outdoor air Indoor air 

Particulates, PM Fossil fuel combustion, forming liquid droplets or solids 
in the atmosphere. 

 
 
 

Ground level ozone (O) Chemical reactions between oxides of nitrogen (NOx) and 
volatile organic compounds (VOCs) in the presence of 
sunlight. 

Sulfur dioxide (SO) Burning of sulphur-containing fossil fuels in power plants 
and other industrial facilities, and by heavy machinery. 

Cooking at high heat, especially meat, combustion 
activities (including gas stoves, burning of candles, use of 
fireplaces, use of unvented space heaters or kerosene 
heaters, cigarette and cannabis smoking, and domestic 
burning of solid fuels). 
Some indoor air cleaners, photocopiers and printers. 

 
 

Largely from outdoor sources. 

Nitrogen dioxide (NO) Burning fossil fuels at high temperatures. Domestic burning of solid fuels 
Carbon monoxide (CO) Incomplete combustion of fossil fuels. Tobacco smoke, gas stove ranges, domestic burning of 

solid fuels . 
Volatile organic 
compounds (VOCs) 

Scented exhaust from clothes dryers and indoor air in 
cities. Fossil fuels, industrial emissions, asphalt paving 
[]. 

Fragrances, scented products (personal care, 
“deodorizers,” cleaning and laundry products, disinfec- 
tants), dry-cleaned clothes, building materials, fumes 
from attached garage. 

Semi-volatile organic 
compounds (SVOCs) 

Pesticides, fumes from paving, diesel fuel. Carpets, textiles, electronics, furniture, building 
materials, cleaning products, personal care products, 
cosmetics, pesticides. 

Polyaromatic hydrocar- 
bons, PAHs 

Naturally occurring in heavy petrochemicals and asphalt. 
Thermal and industrial processes such as incomplete 
burning of coal (coking), oil, waste. Burning tobacco or 
cannabis and charbroiling meat. 

Burning tobacco or cannabis and charbroiling meat. 

Aldehydes e.g. 
formaldehyde 

Not significant. Ozone reactions with terpenes, cigarette and cannabis 
smoke and vape, fresh paints, varnish and floor finishes. 

Microbes Not significant. Water damaged buildings: mould, bacteria and very small 
arthropods such as mites. 

Antimicrobial agents Disinfectants (including pool chemicals) and pesticides. Cleaning and disinfection products, and pesticides. 

Adapted from US Centers for Disease Control and Prevention []; Mannan M et al. Indoor Air Quality in Buildings: A Comprehensive Review of the 
Factors Influencing Air Pollution in Residential and Commercial Structures []; Lucattini L. et al. A review of semi-volatile organic compounds 
(SVOCs) in the indoor environment: occurrence in consumer products, indoor air and dust []. 
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oxidants and antioxidants leading to an accumulation of 
reactive oxygen species (ROS) and other free radicals in 
cells and tissues [10]. It causes molecular damage to cells 
due to adverse modifications of cell components, such as 
lipids, proteins and DNA [51], which can eventually lead to 
many chronic diseases [52]. 

Studies examining the effects of air pollution exposure 
in cell culture, animal models, and human patients 
repeatedly demonstrate changes in oxidative stress and 
inflammatory markers [53–55]. Elevated circulating levels 
of inflammatory biomarkers define systemic inflammation 
[56]. Oxidative stress and systemic inflammation are intri- 
cately linked [57], and both play key roles mediating the 
hazardous effects of environmental stressors [58]. It has 
been repeatedly demonstrated that oxidative stress occurs 
with exposures to a wide range of ubiquitous indoor and 
outdoor pollutants [59–63], including PM; especially UFPs 
from major traffic [64], photocopiers or laser printers used 
in the workplace [65], and even the by-products formed by 
the effects of ozone on house dust [66]. VOCs can induce 
oxidative stress at levels typically found in the indoor air 
[67–70]. Oxidative stress has been demonstrated in in- 
dividuals complaining of poor indoor air quality associated 
with “sick building syndrome.” [71–73]. 

The brain is particularly vulnerable to oxidative stress 
because it has naturally high oxygen requirements and is 
high in polyunsaturated fatty acids, which are readily 
oxidized [74]. Long-term oxidative stress is a key component 
of neurotoxicity mechanisms and plays a causal role in a 
range of brain pathologies [75]. Systematic reviews and 
meta-analyses have established strong associations between 
air pollution exposures and neurodegeneration [76, 77]. 

 

Host defense mechanisms 

The body uses many mechanisms and responses to defend 
itself against foreign substances, microorganisms, viruses, 
toxins, and non-compatible living cells [78]. Defense 
against air pollutants is such a prominent factor in pre- 
venting chronic, complex, environmentally-linked condi- 
tions, that for the purposes of this paper, we review the 
mechanisms for this defense. These include respiratory 
tract defenses, the blood-brain barrier, transient potential 
receptor family and detoxification systems. 

 

Respiratory tract defenses 
 

A large fraction of inhaled PM will be removed via muco- 
ciliary clearance in the upper airways or through engulfment 

by macrophages, predominantly residing in the alveolar re- 
gions [79]. Epithelial cells also form a barrier with tight 
junctions, which regulate the paracellular movement of ions 
and macromolecules [80]. Components of air pollution, such 
as ozone and PM can disrupt the integrity of tight junctions 
[81]. Particles or their components can reach underlying cells 
and exert effects, including oxidative stress and inflamma- tion 
[82–84]. 

Of most relevance are the UFPs that, because of their 
small size, are better able to enter cells and exert toxic 
effects [85–88]. Geometry dictates that smaller particles 
have proportionately greater surface area, and this 
greater contact area for transfer of toxicants magnifies 
their potential toxicity [89, 90]. Some UFPs can still be 
absorbed from the lungs to the blood stream [91], and 
potentially penetrate the blood-brain barrier (BBB). 
Moreover, some reach the brain directly by neuronal 
trans-synaptic transport (translocation) [92–94]. These 
neurons originate within the olfactory epithelium, and 
pass through the skull, ultimately terminating in the ol- 
factory bulb. Translocation enables UFPs to bypass the 
BBB and to gain access to the brain directly through the 
nasal olfactory mucosa, migrating via the olfactory nerve, 
to reach the olfactory bulb and beyond [94–99]. Once 
UFPs reach the brain they can migrate and be deposited 
in more distal regions, causing damage and disruption of 
function and morphology, including in the hippocam- 
pus, corpus callosum and olfactory cortex [100–102]. 
Multiple adverse effects can be observed, including 
inflammation, oxidative stress and neurodegeneration 
[100, 103, 104]. 

 
 

Blood-brain barrier 
 

The BBB is a complex structure that regulates and controls 
the diffusion and transport of substances into the brain 
[105]. The barrier refers to the unique properties of the 
capillary blood vessels that vascularize the CNS, which 
include tight junctions, a much lower rate of pinocytosis, 
and a lack of intracellular fenestrations [106]. It is critical 
for protecting the brain from metabolic waste products, 
toxins and xenobiotics [107]. Xenobiotics are defined as 
molecules not naturally produced by or expected to be 
present in an organism, including environmental pollut- 
ants, drugs, food additives, pesticides, and microbial- 
derived metabolites [108]. 

When considering the effects of inhaled particles and 
pollutants on the CNS, a fundamental question is whether 
they reach the brain. Despite the tightness of the BBB, it has 
been demonstrated that some blood-borne particles may 
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translocate through an intact BBB [109]. More importantly, 
exposure to particulate matter can also damage the BBB 
[92, 110–114], which enhances the potential for exposure of 
the CNS to circulating xenobiotics. Alterations of BBB 
properties are recognized as a significant component of the 
pathophysiology mechanisms and progression of different 
degenerative diseases, including Alzheimer’s and Parkin- 
son’s diseases, amyotrophic lateral sclerosis and others 
[107, 115]. 

 
 
Transient receptor potential (TRP) family 

 
Transient receptor potential (TRP) receptors are a group of 
unique, polymodal ion channels widely expressed in the 
nervous system [116]. They function as cellular sensors and 
can detect a wide spectrum of potentially harmful physical 
stimuli, such as temperature and mechanical or osmotic 
stress. More relevantly, they respond to biochemical stim- 
uli, including mediators of inflammation and oxidative 
stress [117–120]. In particular, they are fundamentally 
involved in the molecular physiology of chemical percep- 
tion [121]. This article is focussed on two particular TRP 
receptors: subfamily vanilloid 1 (TRPV1) and subfamily 
ankyrin 1 (TRPA1). 

Under normal physiological conditions, regulated 
TRPV1 activity contributes to many basic neuronal func- 
tions including resting membrane potential, neurotrans- 
mitter release, synaptic plasticity and mitochondrial 
function, and promotes various processes, such as resis- 
tance to oxidative stress [122]. The TRPA1 receptor plays a 
crucial role as a sensory receptor in several physiological 
and pathophysiological processes, such as pain sensation 
and inflammation [123]. 

Both channels function as chemosensory receptors. 
The TRPV1 channel senses environmental pollutants and is 
activated by various common volatile compounds, such as 
m-xylene, toluene, styrene, benzene, ethylbenzene, 
acetone, diethyl ether, hexane, heptane and cyclohexane 
and formaldehyde [124–126], plus particulate matter 
pollution [127, 128]. 

The TRPA1 channel is robustly activated by a multitude 
of environmental chemical substances, including iso- 
cyanates, heavy metals, oxidizing agents, styrene, naph- 
thalene, formaldehyde, tobacco smoke and multiple other 
VOCs [127, 129, 130]. This receptor is the most broadly- 
tuned chemosensory channel known. To date, more than 
130 different chemicals have been identified as activators 
of TRPA1 receptors [131]. 

These receptors are highly expressed in the olfactory 
and trigeminal nerve endings, which extend within a few 

microns of the surface of the nasal epithelium, just below 
the tight junctions, thereby giving lipid soluble chemical 
stimuli almost direct access [132, 133]. They are also 
expressed in the brain, including such areas as the dopa- 
minergic neurons of the substantia nigra, hippocampal 
pyramidal neurons, hypothalamus, locus coeruleus and 
cortex [123, 134]. 

Multiple in vitro and in vivo studies have demon- 
strated that both types of receptors can be activated by air 
pollution [135–137], oxidative stress [138–141], and sys- 
temic inflammation [142–146]. When inflammation is 
induced, a systemic response of the body is required to 
redirect energy-rich fuels to the activated immune system 
[147]. Primary afferent sensory nerve fibers are activated 
to inform the CNS of the peripheral inflammation. TRPV1 
and TRPA1 receptors play important roles in both initi- 
ating and maintaining activation of the systemic immune 
response [117]. 

TRPA1 and TRPV1 receptors are extensively co-localized. 
While 30% of TRPV1-positive neurons co-express TRPA1, 
TRPA1-positive neurons co-express TRPV1 97% of the time 
[148]. The functional properties, and therefore the patho- 
physiological roles, of TRPA1 receptors are regulated by their 
almost universal co-expression with TRPV1 [131]. TRPV1 and 
TRPA1 function together [134, 149], and their co-expression 
result in unique activation profiles that can be distinct from 
those of cells expressing only TRPA1 or TRPV1 [150]. Jointly, 
they modulate sensitivity, and they can sensitize each other 
[151, 152]. For example, sensitization of TRPA1 receptors via 
repeated low dose exposures to acrolein can enhance 
sensitization of TRPV1 receptors to its well known agonist, 
capsaicin [203]. In fact, the sensitization of each of these 
receptors is dependent on co-expression with each other 
[153, 154]. When activated simultaneously, the effect can be 
synergistic [155]. 

Of major interest is the fact that repeated, chronic 
activation of TRPA1 and TRPV1 receptors can lead to 
upregulation and sensitization [140, 141, 156–160]. In the 
current work, “upregulation” refers to a greater number or 
density of cell surface receptors and their activity, which 
may result in a stronger cellular response to an activating 
substance [161]. Sensitization involves receptor hyperex- 
citability and the perception of an input as noxious, even 
if it is from a normal, or even subthreshold, generally 
innocuous stimulus [162]. 

Sensitization encompasses a lowered threshold for 
activation plus increased firing of action potential (sending 
of a signal along a neuron) with stimulation. TRP receptors 
can become sensitized following repetitive noxious stimuli 
or inflammation [162]. This may be related to the fact that 
TRPV1 and TRPA1 can form complex units (TRPA1V1) in 
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sensory neurons, called heterotetramers, which have 
distinct properties that are different from the individual 
channels [149]. When cells co-expressing these channels 
are challenged with chemicals, the TRPA1V1 hetero- 
tetramer is more commonly activated than either TRPA1 or 
TRPV1 alone [150]. In other words, the more oxidative 
stress and systemic inflammation, the more there is upre- 
gulation of these receptors. When they are both upregu- 
lated by shared triggers, they are co-expressed in close 
proximity [163], and thus they are more likely to form 
heterotetramers. This results in a lower threshold for a 
cellular response to chemical stimuli and enhances the 
strength and duration of the reactions [149]. 

 
 

Detoxification 
 

The impact of chemical exposures is related to both the 
level of exposure and the ability to detoxify and eliminate 
the substances [164]. Detoxification is a fundamental and 
essential component of the defense mechanism inherent 
in every cell. Being deficient in nutritional support [165], 
or being overwhelmed by xenobiotic exposures can 
contribute to inadequate detoxification. Furthermore, 
genetic polymorphisms and epigenetic changes can 
reduce the capacity to metabolize xenobiotics and may 
thereby enhance their toxic effects [166]. Some people 
have more effective detoxification systems than others 
[167–169], which can help to explain the inter-individual 
variations in disease susceptibility. 

 
 

Potential consequences: 
neurodegeneration 

When the protective mechanisms are insufficient or 
overloaded, air pollution can affect the CNS through a 
variety of cellular, molecular, and inflammatory path- 
ways that can potentially lead to a predisposition to 
neurological diseases or damaged brain structures [95]. In 
fact, associations between air pollution exposures and 
neurodegeneration are well established [76, 77]. There is a 
significant body of evidence demonstrating a strong cor- 
relation between air pollution exposure and cognitive 
decline [170, 171], such as that found in Parkinson’s dis- 
ease [76, 172, 173], as well as Alzheimer’s and other de- 
mentias [174–178]. 

Even at levels below the recommended upper limit, 
chronic exposure to PM can be associated with physical 
reductions in grey and white matter mass [179, 180]. 

According to studies conducted in the United Kingdom, 
both PM exposure and living in proximity to major road- 
ways are associated with reductions in the volume of the 
left hippocampus, thalamus and prefrontal cortex [181–
183]. Brain atrophy is associated with neurodegener- ative 
disorders [184, 185]. 

Environmental exposures of the CNS can be increased 
due to alterations of the BBB properties, which are recog- 
nized as a significant component of the pathophysiology 
mechanisms and progression of different degenerative dis- 
eases [107, 115]. Furthermore, systematic reviews provide 
strong evidence of the association of genetic detoxification 
polymorphisms with susceptibility to neurodegeneration 
[186, 187], likely related to increased oxidative stress. Long- 
term oxidative stress is a key component of neurotoxicity 
mechanisms and plays a causal role in neurodegenerative 
disorders [75, 188, 189]. 

Reduced olfactory function, such as deficits in odor 
identification and recognition and increased olfactory 
threshold, are commonly associated with neurodegeneration 
[190–194]. Olfactory loss can appear years before the devel- 
opment of any motor symptoms and cognitive decline [195, 
196], and is considered an early sign for the diagnosis of 
neurodegenerative disorders [197, 198]. This could be the 
result of direct exposure to polluted air on the olfactory nerve 
via the olfactory epithelium [132], and/or the translocation of 
pollutants [94]. 

Another sensory dysfunction commonly seen in pa- 
tients with neurodegenerative conditions is chronic pain. 
The prevalence of pain ranges from 38 to 75% in Alz- 
heimer’s and from 40 to 86% in Parkinson’s disease [199]. 
It can be an early symptom in Parkinson’s and precede 
the motor symptoms by two to 10 years [200, 201]. The 
pathogenesis of chronic pain in these conditions is 
complex, multifactorial and poorly understood [202]. It 
can appear as nociceptive, neuropathic, or miscella- 
neous pain [203], but there is evidence for hyperalgesia 
and allodynia, which is convincing evidence for TRPV1 
and TRPA1 sensitization [206], even before the onset of 
any movement dysfunction in Parkinson’s [207, 208]. 
These channels are involved in the development and 
perpetuation of chronic pain [157, 209]. Therefore, given 
that these channels are involved in the progression of 
neurodegenerative diseases and have a role in pain, it is 
feasible to propose that these channels could act as 
central players common to both processes [199]. 

Sensitivity to noxious stimulation is increased in pa- 
tients with Parkinson’s with or without pain symptoms. 
Although not consistent in all cases, numerous clinical 
studies have reported reduced thermal, electrical, cold or 
mechanical pain thresholds in Parkinson’s disease 
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patients, reflective of hypersensitivity [188]. This suggests 
that hypersensitive TRPV1 and TRPA1 receptors may be 
playing a role. There is support for this concept from an- 
imal studies [210]. Increased pain responses and/or greater 
pain sensitivity is found in cognitively impaired patients 
with widespread brain atrophy or neural degen- eration 
[211]. Sensitization of TRPV1 receptors is also suggested 
by the finding of thermal hyperalgesia and mechanical 
allodynia in a mouse model of Alzheimer’s disease [212]. 

 
 
Calcium in neurons 

 
TRPV1 and TRPA1 are calcium channels and when stimu- 
lated, they facilitate the transmembrane entry of calcium 
ions (Ca2+) into cells [213, 214]. These ions contribute to the 
electrochemical gradient in cells and are critical to cellular 
excitability. The regulation of TRPV1 and TRPA1 activity is 
complex [215], and over-activation of these channels under 
pathological conditions can lead to elevated levels of 
intracellular Ca2+ causing subsequent mitochondrial 
damage and apoptosis [216]. 

Deregulated TRPV1 activation promotes the loss of 
hippocampal neurons and an impairment of cognitive 
functions and has been directly implicated in cell death 
[217]. To reduce this excitability and maintain cell ho- 
meostasis, tight control of intracellular Ca2+ levels in neu- 
rons is crucial to prevent neurodegeneration [218]. Most 
important in this regard are the Ca2+ pumps, which export 
Ca2+ ions out of the cell within milliseconds to restore 
physiological homeostasis promptly [219, 220]. Disruption 
of this precise regulation of intracellular Ca2+ is considered 
to be a final common pathway leading to neuron 
dysfunction and cell death [221], and may also possibly 
play a role in nociception [222]. 

 
 
Vitamin D and protein kinase 

 
Vitamin D also plays a significant role in maintaining the 
plasma membrane expression of the Ca2+ pumps and buffers 
that reduce intracellular Ca2+ levels [223]. The vitamin D 
status is defined by the total 25-hydroxy vitamin D 
(25OHD), which is the sum of the concentra- tions of 
25(OH)D3 and 25(OH)D2 [224]. Low vitamin D status is a 
global problem and is associated with dementia, Alz- 
heimer’s and Parkinson’s diseases [225, 226], and disorders 
of nociception [227]. Vitamin D modulates the function of 
TRPV1; for example, it antagonizes the stimulatory effects 
of TRPV1 agonists like capsaicin because it binds to TRPV1 

within the same vanilloid binding pocket and reduces tri- 
geminal signalling mediated by TRPV1 [228]. This suggests 
that when vitamin D levels are low this protection could be 
reduced. Another example of modulation is the effect of 
25OHD on protein kinase C (PKC), which sensitizes but does 
not activate TRPV1 [229]. Enhanced activity of PKC is 
associated with neurodegeneration [230], but 25OHD re- 
duces the PKC effect on TRPV1 sensitization [231]. 

Protein kinases regulate diverse cellular functions. They 
are also activated by oxidative  stress  and  pollutants [214, 
232, 233], and their overexpression has been implicated in 
various diseases, including neurological  disorders [234, 
235]. There are several hundred kinases encoded in the 
human genome, comprising 1.7% of human genes [236]. 
There are genetic links between kinases and neurodegen- 
erative disorders, such as Alzheimer’s and Parkinson’s dis- 
ease, due to mutations, epigenetic changes, enhanced 
activation or altered expression [237]. Protein kinases can 
sensitize TRPV1 and TRPA1 receptors [238–241]. 

 
 
Central sensitization 

 
TRPV1 and TRPA1 also contribute to central sensitization 
(CS) [242–245], which is defined by the International As- 
sociation for the Study of Pain as an “increased respon- 
siveness of nociceptive neurons in the CNS to their normal 
or subthreshold afferent input” [246]. CS is also charac- 
terized by hyperalgesia and allodynia [247]. 

CS has also been defined as a state in which the CNS 
amplifies sensory input from many organ systems [248]. It 
is a common pathophysiological mechanism in several 
overlapping syndromes, such as chronic fatigue syndrome, 
fibromyalgia and irritable bowel syndrome [249]. A sys- 
tematic literature review of the definitions of CS found that 
the one main theme is the hyperexcitability of the CNS to 
sensory input [247]. Individuals with a central sensitivity 
syndrome may find other normally innocuous stimuli, such 
as touch, heat, cold, sight, sound, smell, to be noxious as 
well [250]. Chronic nociceptive pain and the cardinal fea- 
tures of CS are also commonly found in neurodegenerative 
disorders [207, 251, 252]. 

 
 
Potential consequences: multiple 
chemical sensitivity (MCS) 

There is a significant body of evidence that many in- 
dividuals are observing sensitivity to common chemicals. A 
2015 national survey in the U.S.A. measured the prevalence 
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of self-reported sensitivity to chemicals and medically 
diagnosed multiple chemical sensitivity (MCS) at 25.9 and 
12.8% respectively [253]. 

MCS is an acquired condition in which the person ex- 
periences a range of recurrent symptoms attributed to ex- 
posures to low levels of chemicals that most people regard 
as unproblematic, and which the person used to tolerate 
previously as well [254]. Almost half of MCS patients have 
comorbid migraines, up to 70% are asthmatic, and almost 
90% report adverse effects from exposure to fragranced 
consumer products [253]. 

Up to 60% of asthmatics report that odors of perfumes 
and cleaning sprays provoke asthma symptoms [255], and 
70% of migraine patients report that headaches are trig- 
gered by the odors of perfume, paints and gasoline [256]. 
Having migraine headaches increases the likelihood of 
being an asthmatic, and vice versa [234, 257], and one 
common denominator for this bidirectional association is 
the sensitivity to chemical odors. Both conditions are also 
impacted by air pollutants, including PM, nitrogen diox- 
ide, ozone, and carbon monoxide [258, 259]. Furthermore, 
TRPV1 and TRPA1 channels are implicated in their trig- 
gering mechanisms [260, 261]. 

Several case definitions for MCS were proposed in the 
1980s and 90s, with differing characteristics other than one 
feature in common: that symptoms were linked to low 
levels of chemical exposures [262]. The most widely 
Accessed case definitions are those proposed by Cullen in 
1987 [263], and the MCS consensus proposed in 1999 [264]. 
Cullen defined MCS as an acquired disorder characterized 
by recurrent symptoms referable to multiple organ systems 
and occurring in response to exposure to chemically un- 
related compounds at doses far below those established in 
the general population to cause harmful effects. The MCS 
consensus definition was validated in 2000 [265], and in- 
cludes the following [264]: 
(1) The symptoms are reproducible with [repeated] 

chemical exposure. 
(2) The condition is chronic. 
(3) Low levels of exposure [lower than previously or 

commonly tolerated] result in manifestation of the 
symptoms. 

(4) The symptoms improve or resolve when the incitants 
are removed. 

(5) Responses occur to multiple chemically unrelated 
substances. 

(6) Symptoms involve multiple organ systems. 
 

Interestingly, in a study by McKeown-Eyssen et al. it was 
found that symptoms which most commonly distinguished 
patients with MCS from controls involved the CNS, and 

included having a stronger sense of smell than others, 
feeling “spacey”, feeling dull or groggy, and having diffi- 
culty concentrating [262]. In 2005, Lacour suggested an 
extension of the criteria, opining that multiple symptoms 
in other body systems be mentioned, but this would 
decrease specificity of the definition [266]. 

Similar to neurodegenerative disorders, genetic poly- 
morphisms predisposing to less efficient metabolism and 
excretion of commonly encountered environmental chem- 
icals are more common in people who meet the criteria for 
MCS [267–272]. These findings have not been completely 
consistent [273, 274] however, a regression analysis pub- 
lished in 2019 reinforces the concept that a genetic risk 
related to phase I and II liver enzymes involved in xenobiotic 
detoxification can play a role in the pathophysiological 
route towards sensitization to olfactory compounds in MCS 
[275]. Nevertheless, even in the absence of an abnormality 
among detoxification polymorphisms, oxidative stress and 
systemic inflammation are universally observed in MCS 
patients [276, 277]. There is also evidence suggesting that the 
BBB may be dysfunctional in MCS [278], which would enable 
greater chemical exposures in the CNS. 

A strong association between pollutant exposure and 
MCS is evidenced by the onset. Many published papers 
report the onset of MCS following recognized or well- 
defined chemical exposures [279], such as in new or 
renovated homes or nonindustrial offices because of the 
gassing off of construction materials such as paints, sol- 
vents and new carpets, or immediate or lingering effects of 
pesticides [280, 281]. The most commonly reported factors 
associated with the onset of MCS (estimates in brackets) 
include [282, 283]: 
– exposure to indoor air contaminants caused by  new 

construction or renovation of a home or office (63.2%) 
– exposure to various solvents and cleaners (54%) 
– indoor air contaminants (45%) 
– pesticides or agricultural chemicals (27.4%) and 
– chemicals encountered at work or used in hobbies 

(26.3%). 
 

Other clinical studies similarly describe exposures at the 
onset of symptoms. Initiating agents include organic sol- 
vents, hydrocarbon compounds and pesticides, and 
chemicals described as irritating or having an odor. Clus- 
ters of cases may emerge in what have been described as 
“sick buildings” with chemical mixtures and/or molds and 
other agents generated within or infiltrating poorly venti- 
lated structures [284–290]. 

The initiation of MCS is more likely to be associated 
with identified exposures and differs from neuro- 
degenerative disorders, which begin more insidiously with 
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non-specific symptoms, such as chronic pain and loss of 
olfaction, perhaps years before the hallmark symptoms and 
signs of the specific disease. 

 

TRPV1 and TRPA1 sensitization in MCS 
 
TRPV1 receptors are heat sensitive and respond to capsa- 
icin [291], the pungent ingredient in hot chili peppers that 
produces the sensation of heat [292]. Capsaicin is also a 
well-known cough-inducing agent when inhaled because 
it provokes cough in a safe, reliable and dose-dependent 
manner [273, 293], by stimulating the TRPV1 receptors 
[294]. The more sensitive the receptors on the sensory 
neurons lining the bronchial tubes, the more easily 
coughing can be provoked with capsaicin inhalation [295]. 
Capsaicin has been used in clinical research for more than 
three decades [296]. 

 

Capsaicin inhalation challenge and chemical 
sensitivity 

 
In 1996, a small study was performed in Sweden on nine 
patients with at least a two-year history of airway symp- 
toms as well as headache, fatigue, dizziness and chest pain 
[297]. Demonstrable bronchial obstruction and IgE‐medi- 
ated allergy had been ruled out and there was no benefit 
from prescribed beta-agonist or steroid inhalers. Symp- 
toms were purported to be induced by chemical odors, 
such as house paint and perfume. The patients were 
challenged with inhalations of perfume or a saline placebo 
and a nasal clamp was used to prevent the detection of the 
scent of perfume. The patients’ observations of symptom 
provocation by perfume were verified by blinded perfume 
inhalation and were reproduced in a second round of 
testing at least one week later. Since the patients could not 
detect the odor of perfume, the authors concluded that the 
symptoms were not transmitted via the olfactory nerve but 
may have been induced by a trigeminal response via the 
respiratory tract or the eyes. 

This same research group then tested a similar group of 
patients claiming to have asthma-like symptoms provoked 
by multiple chemical exposures [298]. The respiratory 
symptoms included heavy breathing, difficulties in getting 
air, pressure over the chest, coughing, phlegm, hoarse- 
ness, stuffy nose and eye irritation. Many were on long term 
disability. As in their first study, the authors demonstrated 
that asthma and allergies were ruled out by normal meth- 
acholine challenge testing and negative skin prick tests. 
These patients also alleged to have other symptoms in 

multiple systems, including eye irritation, fatigue and 
headache. Since the authors had postulated symptom in- 
duction by a trigeminal reflex, the patients were challenged 
with capsaicin inhalation. Compared to controls, the pa- 
tients with purported sensitivity to chemical odors with 
asthma-like symptoms coughed more after capsaicin 
inhalation in a dose-dependent manner and were provoked 
at lower doses. Furthermore, the same respiratory and non- 
respiratory symptoms were also provoked yet the pulmo- 
nary function tests remained normal. 

Since 1998, this research group has produced multiple 
other papers supporting the finding of respiratory hyper- 
reactivity in those who also meet the criteria for MCS, even 
when asthma has been ruled out by methacholine chal- 
lenge [284, 299–303]. The non-respiratory symptoms 
included headaches, lightheadedness, nausea and/or fa- 
tigue. These patients have respiratory sensory hyperreac- 
tivity probably due to the sensitization of TRPV1 receptors 
and follow-up after five and 10 years later showed no 
reduction in sensitivity to inhaled capsaicin [304, 305]. 
Similar findings of capsaicin inhalation hypersensitivity in 
patients meeting the criteria for MCS have been published 
by other centres in Denmark [306], and Japan [307]. MCS 
patients consistently demonstrate TRPV1 sensitivity with 
capsaicin inhalation challenge, which is a reliable clinical 
research tool with good short- and long-term reproduc- 
ibility [293]. 

We identified one single-blind inhalant challenge study 
in MCS patients using acrolein [308], that also 
demonstrated greater cough sensitivity than in controls, 
suggesting that TRPA1 receptor sensitization may be 
contributing to chemical hypersensitivity as well. 

The evidenced sensitization of TRPV1 and TRPA1 re- 
ceptors in MCS provides the explanation for the multitude 
of structurally unrelated chemicals to which these patients 
observe and attribute sensitivity reactions [309]. 

 
 
Olfactory sensitivity and MCS 

 
Having a stronger sense of smell than others since the onset 
of MCS is a very frequent subjective complaint that dis- 
tinguishes MCS patients [262, 310–313]; however, a number 
of studies have not found any difference in odor detection 
thresholds [310, 314–316], or odor identification [317]. In 
other words, there was no direct evidence of olfactory nerve 
dysfunction. Nevertheless, some objective support for the 
patients’ observed increased sense of smell experience 
comes from a brain imaging study showing that the re- 
sponses at the recognition threshold level are stronger in 
those with MCS, and perceived intensity and 
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unpleasantness of odors are significantly higher [318]. This 
may be because the capacity to detect and react to volatile 
chemicals is mediated by both the olfactory and trigeminal 
systems, which interact [319–321]. Most odorants also 
stimulate the trigeminal nerve; even anosmics are able to 
distinguish between odorants based on their trigeminally- 
mediated sensitivity [319]. Central processing of olfactory 
and trigeminal stimuli activate synonymous somatosen- 
sory and primary olfactory regions [322]. The perceived 
increase in olfaction sensitivity reported by those with MCS 
may be related to the lower stimulation threshold of the 
trigeminal nerve in MCS, as demonstrated in numerous 
studies using capsaicin inhalation challenge. This differs 
from neurodegeneration, in which there frequently is loss 
of olfaction. 

 
 

CNS dysfunction in MCS 
 

Unfortunately, studies in which MCS patients are chal- 
lenged directly with chemicals [323], such as perfume, have 
not been consistent because of multiple problems with 
design [324]. As a result, the focus of MCS research more 
recently has shifted from experimental models of chemical 
stimulation and symptom provocation to searching for and 
measuring neurological dysfunction to understand the 
clinical aspects of MCS. MCS patients frequently attribute 
neurocognitive symptoms to chemical exposures [262, 266, 
325]. This observation is supported by a 2010 chemical 
challenge study using simultaneous single photon- 
emission computed tomography brain scan imaging, 
which found an association of simultaneous dysfunction 
processing odors with cognitive impairment [326]. Abnor- 
malities in brain imaging in patients with MCS at rest have 
been described since 1994 [327–329], although differences 
are not consistently found at baseline [330]. There is no loss 
of brain mass observed, in contrast to neurodegeneration, 
but multiple studies employing functional brain scan im- 
aging provide measurable evidence that patients with MCS 
process odors differently compared with normal, healthy 
controls, including the finding of prolonged recovery time 
after exposure [314, 318, 331–334]. It is noteworthy that 
when challenged with chemical exposures, compared to 
controls, MCS patients demonstrate a stronger signal- 
intensity reaction in magnetic resonance imaging (MRI) of 
the limbic system [335], and particularly in odor-processing 
areas such as the hippocampus, amygdala, and thalamus 
[326]. Functional MRI has also demonstrated that MCS 
patients do not habituate to repeated sensory stimulation 
when compared to healthy controls, but instead show 

evidence of sensitization, as evidenced by increased reac- 
tivity to repeated, consistent stimulation [336, 337]. 

The evidence is compelling that there is CNS 
dysfunction in MCS patients. A 2018 systematic review 
found consistent evidence that MCS patients have altered 
processing of ascending sensory pathways with over- 
activation in the limbic system, and olfactory and cognitive 
manifestations [338]. A 2019 systematic review identified 
nine studies that used functional imaging to assess cere- 
bral responses to several different odorous stimuli and all 
demonstrated that odors are processed differently by MCS 
patients compared with controls [339]. In addition, EEG 
measurements of olfactory event-related potentials pro- 
vides evidence for TRPV1 sensitivity to carbon dioxide 
[340], which may help to explain why MCS patients may 
experience panic attacks when provoked by carbon diox- 
ide challenge [341]. 

Central sensitization has also been evidenced in MCS 
[342], which is not surprising given that central sensitiza- 
tion involves the action of TRPV1 receptors. This may help 
to explain why fibromyalgia and MCS are frequently co- 

morbid [343, 344]. Interestingly, increased hyperalgesia 
and temporal summation of pain can be observed in MCS 
patients, even without other comorbid disorders [342, 345]. 

There are as yet no published studies on MCS examining 
a potential relationship with low vitamin D levels or 
increased protein kinase activity, despite the evidence for 
TRPV1 modulation and sensitization respectively [228, 229]. 

 
 

Comparison of neurodegeneration 
and MCS 

The major risks to the CNS from chronic air pollution 
exposure are the development of neurodegenerative dis- 
ease and/or MCS (Table 2). There are both similar and 
distinctive associated exposures, and genetic, pathophys- 
iological and clinical features of neurodegenerative disor- 
ders and MCS (Table 2). Shared features include associated 
risks for adverse effects from airborne chemical pollutants 
according to one’s genotype for detoxification and 
dysfunctional BBB; adverse effects on a cellular level, 
including oxidative stress, systemic inflammation and 
changes in polymodal TRPA1 and TRPV1 receptor function; 
and chronic pain and central sensitization. Neurodegen- 
erative conditions involve olfactory nerve dysfunction, and 
MCS most likely involves the trigeminal nerve. The condi- 
tions diverge in how the TRPV1 and TRPA1 channels 
respond. Intriguingly, while people with neuro- 
degeneration or MCS are more likely to experience 
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Table : Associations of exposures and markers of neuro- 
degeneration vs. MCS. 

 
Neurodegeneration Multiple chemical 

sensitivity 

Air  pollution exposure     ✓ ✓ 
Genotype for ✓ ✓ 
detoxification 
Oxidative stress ✓ ✓ 
Systemic inflammation   ✓ ✓ 
Disruption of BBB ✓ ✓ 
Chronic pain ✓ ✓ 
Central sensitization ✓ ✓ 
Decreased cognition ✓ ✓ 
Loss of brain mass ✓ None 
Olfactory dysfunction Loss of function Dysfunctional 

processing 
Trigeminal dysfunction   None ✓ 
TRPV upregulation ✓ ✓ 
TRPA upregulation ✓ ✓ 

Table : Overlap between MCS and dementia in – CCHS MCS 
respondents over  years old. 

 

 CCHS cohort > y With MCS 

No dementia ,, , 
Alzheimer’s or other dementia , (.%) , (.% 

p- value for difference in dementia prevalence in respondents with and 
without MCS=. 

 
neurodegenerative disorders. People experiencing MCS 
are statistically significantly more likely to develop 
Alzheimer’s or other dementia (p=0.046). Further research 
is required to corroborate these findings that there is an 
associated risk of neurodegeneration for patients with 
MCS, and if not, how the commonalities illustrated in 
Table 2 diverge such that those with MCS would be spared 
dementia. 

Finally, a number of nonsynonymous single-nucleotide 

TRPV chemical 
sensitivity 
TRPA chemical 
sensitivity 
Onset with chemical 
exposure 

None ✓ 

None ✓ 

Insidious ✓ 

polymorphisms (SNPs) have been described in the human 
TRPV1 gene, associated with increases in both the response 
to capsaicin and the expression of TRPV1 on the cell surface 
[347, 348]. Genetic mutations in TRPV1 and TRPA1 have 
been found which are associated with increased sensitivity 

Low vitamin D ✓ Unknown 
Protein kinase activity    ✓ Unknown 

 

 
 
hyperalgesia and allodynia [206, 342, 345], due to receptor 
upregulation and sensitization, symptomatic responses to 
low-dose chemical exposures are reported only by those 
with MCS. Reasons for this difference are unknown but may 
possibly be a reflection of receptor phenotypes. 

Sensitization to multiple unrelated chemicals is diag- 
nostic for MCS; a condition that has been evidenced by 
multiple studies of capsaicin challenge tests and func- 
tional MRIs. Unlike neurodegenerative disorders, MCS 
patients do not demonstrate loss of olfactory nerve func- 
tion or CNS mass, but do show olfactory processing 
dysfunction. The reason for this divergence of the patho- 
physiologic pathways to dysfunction and damage is not 
clear. Despite the overlapping exposures and mechanisms, 
there is no robust published evidence for comorbidity of 
neurodegeneration with MCS. 

A clue to possible comorbidity is offered by the 2015-16 
Canadian Community Health Survey (CCHS) [346]; a cross- 
sectional survey that collects information about the health 
behaviors and health care use of the non-institutionalized 
household population aged 12 or older. Statistics Canada 
provided a tabulation from the CCHS 2015–2016, of Cana- 
dians aged 40 y or older (representing 745,700 people) who 
reported having MCS, or “Alzheimer’s or other dementia” 
(Table 3). No information was gathered regarding other 

to chemicals [320, 349–351], as well as an enhanced 
perception of odorous stimulants that is likely trigeminal 
[351]. MCS patients may have TRPV1 and/or TRPA1 poly- 
morphisms that predispose them to develop sensitization to 
pollutant exposures and odors. 

 
 
Conclusion 

There are interacting and overlapping pathophysiological 
features of responses to environmental exposures that are 
associated with neurodegeneration and MCS. These 
include genotypes for detoxification, oxidative stress, 
systemic inflammation, disruption of the BBB, chronic 
pain, central sensitization, decreased cognition and upre- 
gulation of TRPV1 and TRPA1 receptors. 

TRPA1 is the most promiscuous sensor of chemicals 
known. While much less literature examines sensitization of 
TRPA1 than TRPV1 receptors in MCS, it is clear that these 
receptors are frequently co-expressed and can sensitize and 
provoke responses in each other when stimulated. They can 
combine to form a complex unit (which is the structure most 
commonly activated when challenged with chemicals in 
vitro) and they can interact synergistically. TRPA1 and 
TRPV1 sensitization explains the myriad of chemicals to 
which MCS patients attribute reactions and observe 
sensitivities. Co-expression of TRPA1 and TRPV1 and 
formation of complex units may contribute to the 
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severity of MCS. Further research on MCS should investi- 
gate TRPA1 sensitization, singularly and in conjunction 
with TRPV1. This may assist in finding a clinical marker for 
the diagnosis of MCS. Identifying TRPV1 and TRPA1 poly- 
morphisms in neurodegenerative disorders and MCS may 
help to understand how air pollution influences the 
divergent development of these conditions and provide 
targets for management and treatment beyond placing a 
high priority on air pollution prevention and abatement. 
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